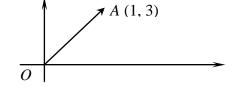
Year 11 Term 4 Extension II 2007

Question 1. Marks

(a) Let
$$z_1 = 2 - i$$
 and $z_2 = iz_1$, find $z_1 - z_2$.

(b) Let
$$z = \frac{-9 + 15i}{4 - i}$$
,


(i) By simplifying
$$\frac{-9+15i}{4-i}$$
, express z in the form $a+bi$, where a and b are real numbers.

(ii) Hence, or otherwise find
$$|z|$$
 and arg z. 2

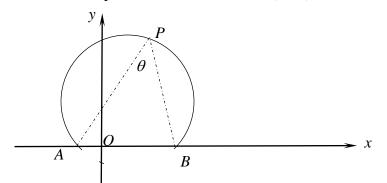
(c) Solve
$$z^2 = 35 - 12i$$
, expressing your answer in the form $a + bi$.

(d) Sketch the region on an Argand diagram neatly, where the inequalities
$$|z-2| \le \text{Re}(z)$$
 and $\text{Im}(z) \ge 0$ hold simultaneously.

(e) Let point A, below, represent the complex number 1+3i in the Argand diagram. 2

Not to scale

OA is rotated 45⁰ anticlockwise about *O* and enlarged by a factor of $\sqrt{2}$. Find this new complex number in the form a + bi.


Question 2. [Start a New Page]

- (a) Given 1-2i is a root of $x^2 + bx + c = 0$, where b and c are real numbers, Find the value of bc.
- (b) (i) Sketch neatly on the same diagram the loci of z when: $(\alpha) |z (3+2i)| = 2. (\beta) |z+3| = |z-5|.$ [clearly label each sketch]
 - (ii) Hence write down all the values of z which satisfy simultaneously: |z (3+2i)| = 2 and |z+3| = |z-5|.
 - (iii) Determine the values of k for which the simultaneous equations: |z (3+2i)| = 2 and |z 2i| = k have exactly one solution for z.
 - (iv) For the locus of z when |z (3 + 2i)| = 2, find the maximum value of arg z.

2

(c) The diagram below shows the locus for all complex numbers z in the Argand diagram, such that $\arg\left(\frac{z-3}{z+1}\right) = \frac{\pi}{3}$.

The angle formed by the intervals AP and BP is θ , where P represents the complex number z and A is (-1,0) and B is (3,0).

Not to scale

- (i) Copy this diagram neatly and find θ , giving reasons.
- (ii) Find the coordinates for the centre of this circle.

Question 3. [Start a New Page]

- (a) Let P, Q and R represent the complex numbers z_1 , z_2 and z_3 respectively. By drawing a diagram or otherwise, determine the geometric properties that characterize ΔPQR if $z_2 z_1 = i(z_3 z_1)$? Give clear reasons for your answer.
- (b) Given $z = \cos \theta + i \sin \theta$ and that m and n are integers.

(i) Show that
$$\frac{z^n + z^{-n}}{2} = \cos n\theta.$$

- (ii) Hence, using part (i), show that $\cos m\theta \times \cos n\theta = \frac{1}{2} \left[\cos(m+n)\theta + \cos(m-n)\theta \right].$
- (c) Let $P(z) = z^8 \frac{5}{2}z^4 + 1$. The complex number α is a root of P(z) = 0.
 - (i) Show that $i\alpha$ and $\frac{1}{\alpha}$ are also roots of P(z) = 0.
 - (ii) Find one of the roots of P(z) = 0 in exact form.
 - (iii) Hence find all the roots of P(z) = 0.

Question 4. [Start a New Page]

Marks

(a) The point *P* on the Argand diagram represents the complex number *z*, where *z* satisfies $\frac{1}{z} + \frac{1}{\overline{z}} = 1.$

Find the locus of P as z varies

- (b) (i) State the triangle inequality for the two complex numbers z_1 and z_2 . 1
 - (ii) If $z_1 = 3 + 4i$ and $|z_2| = 13$, find the greatest value for $|z_1 + z_2|$.
 - (iii) Further, if $0 < Arg z_2 < \frac{\pi}{2}$ and $|z_1 + z_2|$ has this greatest value, find z_2 .
- (c) Given $w = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$,
 - (i) Show that w^k is a solution of $z^5 1 = 0$, where k is an integer. 2
 - (ii) Explain why $1 + w + w^2 + w^3 + w^4 = 0$.
 - (iii) Hence, or otherwise find the value of: $(w-1)(1+2w+3w^2+4w^3+5w^4)$
 - (iv) Given that $S = \frac{w}{1 w^2} + \frac{w^2}{1 w^4} + \frac{w^3}{1 w} + \frac{w^4}{1 w^3}$, Show that S = 0.

THE END

MATH. EXT 2 SOLUTIONS, TERMY 2007

MATHEMATICS Extension 2: Question		· • • • • • • • • • • • • • • • • • • •
Suggested Solutions	Marks	Marker's Comments
(a) $z_1 - z_2 = 2 - i - i(2 - i)$ $= 2 - i - 2i - 1$ $= 1 - 3i$		
(b) (i) $z = (-9 + 15i) \times (4 + i) = -36 - 9i + 66i - 15$ $(4 - i) (4 + i) (7)$ $z = -51 + 51i = -3 + 3i$		the supposeding
(ii) z = 9+9 = 118 = 312		1 For {z} = 118 =
arg Z = 3 Tr		I for out s = In
(c) Let $z = x + iy$, $x,y \in R$ $z^2 = x^2 - y^2 + 2xyi = 35 - 12i$ METHOP! $x^2 - y^2 = 35 - (i)$ $xy = -6 - (2)$		
No $x^{2}y^{2} = 3C$ and $x^{4} - x^{2}y^{2} = 35x^{2}$ i.e. $x^{4} - 36 = 35x^{2}$ $x^{4} - 35x^{2} = 36 = 0$ $(x^{2} - 36)(x^{2} + 1) = 0$		1 504 6 8 44 806
>c=±6 or no real solut		1 For - 6 + 6
(d) Let $z = x + iy$ $Re(z) = x$ $ z-z = \sqrt{(x-z)^2 + y^2}$ $ z-z = \sqrt{(x-z)^2 + y^2}$		torech Relzi = N Jun(z) = 4
$\int (x-2)^{2} + y^{2} \leq x$ $x^{2} - 4x + 4 + y^{2} \leq x^{2}$		FAR V EX
and $y^2 \leq 4(x-1)$		For exercise of
		i the shreeled
四		
e) New number = (1+3i) × \(\frac{1}{2} \times cist} = (1+3i) \times \(\frac{1}{2} \times cist}		
= -2+41		

Suggested Solutions	Marks	Marker's Comments
) (1-2) is gived as all the western	टमंड	i mK
		Y2
$x+\beta = -b_{6} = -b = 1+2i + 1-2i$ -b = 2 b = -2		42
2° 6° = -2×5 =-10		1 mk
(i) 2-(3+2i) -2 is a circle centre (3+2i) [2+3 = 2=5 is the perp. bisector of interval	1/2	
3+2i 3+2i 2 105		
) Diace 2=1 is a target to the circle there's only one prist of intersection		1 for answer
2-2i=K represents a circle centre 2i, crotius K. 2 columnes Kelotian for 2 When K=1 20 K=5		1 mk toreach answer
) max arg $z = 2\theta$ $= 2 \tan^{3}(213)$ $= 104 \tan^{2} 2$		The Good and explaining the for E = 2thing (2)

(a) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		CS Extension 2: Question		
(ii) costre will be an x=1 since the perpendicular through the contre through the contre through the contre through the centre of the chard AB prose of the contre through the centre of the chard AB prose of the contre through the centre of	Suggested Solution	is	Marks	Marker's Comments
(ii) contre will lie on x=1, since the perpendicular bisector of the chard AB passes through the centre (ABB = 20 (angle of cuttre is ABB = 20 (angle of	as a (2- ac 3) (2+	- B = O of a time to	e undus	i st mark
A 1 13 SADS = 20 (angle at centre is 1st mark The cocumbence) y = 13	codre will lie on x=1,	= \\ 3	dar	2nd mark
Ecetre is (4)	3 SAO3 = 3	tents the encumber	N 1	1st mark
	- Ecentre is (2nd mark

MATHEMATICS Extension 2: Question. 3	
Suggested Solutions M	Marker's Comments
(a) 10 Alak is not analytic and in the second of the seco	i for answerldian
multiplication at (23-2,) by contacts the length 90° conticlectures it desait contacts the length as 12-21=11(2-2)	\
$= i \times z_3 - z_1 $ $= z_3 - z_1 $ $= z_3 - z_1 $ $= z_3 - z_1 $	
$= \frac{2}{2}$ $= $	1 mk
$= 2\cos(ne)$ $= \cos(ne)$	1 mik
(1) $\cos(me) \times \cos(ne) = (2^{m} + 1^{-m})(2^{n} + 1^{-m})$	42
$=\frac{2^{m+n}+2^{m+n}+2^{m+n}}{4}$	1/2
$= 2^{m+n} + 2^{-(n+n)} + 2^{m-n} + 2^{m-n}$	<u>y</u>
= 2605(m+a)6 + 2605(m-n)6	1/2
$=\frac{1}{2}\left[\cos(m+\alpha)\Theta+\cos(m-\alpha)\Theta\right]$	
QEQ.	

Suggested Solutions Suggested Solutions Suggested Solutions $P(z) = z^2 - \frac{1}{2}z^2 + 1$ Suggested Solutions	Marks	Marker's Comments
2 is a cost of P(2)=0		
	-	
	- 1	1
		•
P(1x)=(1x)8-3(x)+1		
= i 4 - 5 (1/4) +1		
= 4 =		
	-	(
P(= (=) = 3 = 1 = 1 = 1 = 1		
		1
~~		1
is id and it are also looks at P(2)		
(i) 2- = =================================		
		(
(32 - 1)(2 - 2) = 0		
		1
		1
-		9 6
(iii) the roots are ±切, ±切, ±切, = 亩, =		2 marks

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
(a) Let $z = x + iy$ so $\frac{1}{2} + \frac{1}{2} = 1$ $\frac{1}{2} = x - iy$ $\frac{1}{2} + \frac{1}{2} = 1$ $\frac{1}{2} = x - iy$ $\frac{1}{2} = $	((10)	• • • • • • • • • • • • • • • • • • •
(ii) $ z_1+z_2 \le z_1 + z_2 / equality iff colling (iii) P(z_1+z_2) Qvealent z_1+z_2 = z_1 + z_2 = z_1 + z_2 + z_2 + z_1 + z_1$		(Zz = kz()
(111) As z_1 and z_2 are collinear \Box $OP = 18$ $OP = 13$		Z= 13 ri=P where tor 0 = 4
(c) (i) $w = cis \frac{2\pi}{5}$ $ [w' = cis \frac{2\pi}{5} k de \text{ Moivies Than}] $ $ [z'-1] = (w')^{5}-1 = (w^{5})^{6}-1 $ $ = (cis \frac{2\pi}{5} \times 5) -1 $ $ = (cis \frac{2\pi}{5} \times 5) -1 $		
in 2 -1 = 0 in 2 -1 = 0 in whis a solution of 2 -1 =0 K = 7 (ii) As 2 -1 =0 5 roots = w,		
and Za= 1+ w+w++w+=-b==0		

1007 1-1

MATHEMATICS Extension 2: Question.... Marks Marker's Comments **Suggested Solutions** (نان) رع (w-1) (1+2w +3w2 + 4w2+5w1) = w + 2w2 + 3w3 + 4w4 + 5x1 - 1 - 2w - 3w2 - 4w - w - w = w 3 - w 4 = - (w + w2 + w3 + w4) + w2 METHODI: S= W ر ــ س ع L-W4 W F + W4 W-1 = 0 · 5 = 0 METHOD 2 1-W2